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I(S= l/d) - I(S= 3/2d) 
• [ ( S = I / d )  =0.1 (26) 

to describe the critical ratio, we find for the limiting 
value of d 

de= ~/4:8_ (27) 

For the materials treated in this paper, the limiting 
repeat spacings are 9490 A for PE, 3430/~ for PTFE, 
and 1370 ,~ for the AI-Zn alloy. 

Discussion 

In order for a material to show this effect, the plates 
need not be broad. For the case of a stack or colony of 
lamellae embedded in a matrix of the same average 
electron density, the results still hold, with the proviso 
that the amplitude function be corrected for the finite 
platelet width. (The effect of less broad lamellae is 
itself to broaden the diffraction peaks.) 

If the real number of elements in the stack is 
limited, one needs to solve the exact equation (14). In 
this case, the numerator can no longer be set equal to 
unity. Calculations for finite stacks are beyond the 
scope of the present work. It is expected, however, that 
the results will be similar to those for the larger aggre- 
gates. 

The limiting values of d calculated here indicate that 
advances in low angle resolution to d's in excess of 
1/~ will be of limited help in studying lamellar systems. 
It is, for example, evident that the band structure in 
slowly cooled PTFE (see Geil, 1963) and most eutectic 

or eutectoid colonies in alloys cannot be observable, 
due to the combination of high/z and d. 

Conclusions 

The effect of absorption on X-ray scattering from 
lamellar stacks has been shown to produce the follow- 
ing characteristics: 

(1) Small angle diffraction peaks are broadened, 
proportionally to the linear absorption coefficient /z 
and the square of the repeat distance d. 

(2) Proceeding to mth order peaks, these should be 
sharpened relative to the first order according to 1/m. 

(3) The effective number of scattering elements 
decreases sharply with denser material. 

(4) Effective upper limits of d which can be resolved 
can be calculated. For most polymers, these values will 
be greater than 1000 A, while for metals the value will 
be of the order of hundreds of Angstr6ms. 

This work was supported in part by the National 
Science Foundation. 
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An alternative to the procedure suggested by Busing & Levy [Acta Cryst. (1967) 22, 457] for ~efining 
the crystal orientation matrix and (if desired) the crystal lattice parameters is proposed, in which linear 
observational equations are written with Miller indices as coefficients. Constraining equations appro- 
priate to the crystal symmetry (exact to first order in the corrections) are presented for monoclinic, 
hexagonal, orthorhombic, tetragonal, and cubic systems. 

In a recent paper and an associated report, Busing & 
Levy (1967a, b) have presented equations in matrix no- 
tation for single-crystal diffractometer angles in terms 

of the lattice constants and the crystal orientation 
matrix. In connection with these equations these au- 
thors have suggested procedures for refining the orien- 

A C 2 6 A  - 7 
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tation matrix, and if desired also the lattice constants, 
with precise diffractometer data. If the lattice constants 
as well as the orientation parameters are to be refined, 
measurement of the directions (two angles each) and 
the lengths (from the Bragg angles) of three non- 
coplanar reciprocal lattice vectors suffices for the de- 
termination or refinement of the three orientation par- 
ameters and the six lattice constants of a triclinic crys- 
tal. 

If the lattice constants are not to be refined, measure- 
ment of the directions of any two non-collinear recip- 
rocal lattice vectors will suffice to establish the orien- 
tation. However, since diffractometer measurements 
and lattice constants are subject to error, it is in general 
impossible to orient the crystal so that two or more 
non-collinear reciprocal lattice vectors are at the same 
time exactly parallel to the directions found for them by 
diffractometer measurements. The same difficulty can 
exist even if the lattice constants are to be refined, if 
the relative directions of the chosen reciprocal lattice 
vectors are fixed by crystal symmetry. Busing & Levy 
get around this difficulty by assuming that one vector 
is precisely in the direction found for it, and that the 
second is in the plane defined by this direction and 
the second direction and as close to the latter as pos- 
sible. An objection to this procedure is that it arbi- 
trarily ascribes all of the measurement error to one 
direction and none of it to the other. Recognizing this 
fact, and the fact that one will frequently wish to make 
measurements on several reflections in order to reduce 
the effect of random errors, Busing & Levy proposed 
that the lattice and orientation parameters be refined 
by least squares, and presented a procedure for such 
refinement (Busing & Levy, 1967b) that includes pro- 
vision for constraints due to crystal symmetry. 

We present here a refinement procedure that differs 
from that of Busing & Levy in several respects (see 
Discussion), and we present also constraining equa- 
tions for monoclinic, hexagonal, orthorhombic, tet- 
ragonal, and cubic systems, in a form consistent with 
the Busing & Levy (1967a) equations and notation. 
For a given crystal system one set of two to five con- 
straining equations will apply if the lattice constants 
are to be refined (i.e. the only constraints are from 
crystal symmetry); additional ones to a total of six will 
apply if lattice constants are not to be refined. These 
constraints may be used if desired to minimize the 
number of observations needed for determining the 
desired parameters, or they may be used in a least- 
squares-with-constraints treatment of an overdeter- 
mining set of observations. 

We assume that from precise measurements of dif- 
fractometer angles we have obtained values of the co- 
ordinates of several reciprocal lattice points,J" 

h~0j- {h~lj, h~2j, h~3j} , 

I" A sequence of  quantities enclosed in curly brackets  here 
represents  the set of  componen t s  of  a column vector. 

together with their uncertainties (from which weights 
for use in the least-squares refinement can be derived), 
in a Cartesian axial system affixed to the (p-circle of the 
diffractometer. The third axis of this system, which is 
the 'cp-axis system' of Busing & Levy, is parallel to the 
axis of ~0 rotation. These coordinates are in general not 
integers; they have dimensions of reciprocal length. The 
coordinates of each reciprocal lattice point in this 
system are related to the Miller indices of the reciprocal 
lattice point by the expressions [equations (2) and (4) 
of Busing & Levy (1967a)]: 

h~4 = UBhj = Vhj (1) 
where 

hj = {hlt, h2j, h3j} 

is the set of three Miller indices (integers), B is a matrix 
from which Cartesian coordinates in a standard frame 
of reference - the 'crystal Cartesian axis' system of 
Busing & Levy - are derived from the Miller indices, 
and U is a unitary 'orientation matrix' from which the 
reciprocal lattice coordinates in the ~0 system are derived 
from the crystal Cartesian coordinates. In the crystal 
Cartesian system the first coordinate axis is taken paral- 
lel to the reciprocal lattice vector a* and the third is 
taken parallel to the direct lattice vector e. In this 
paper all axial systems are assumed to be right- 
handed. 

We also assume that we already have at our disposal 
'preliminary' values to moderate precision for the 
lattice constants and the orientation parameters. These 
quantities, and the matrices calculated from them, will 
be identified with zero subscripts (e.g. a0,B0). 

Given the diffractometer measurements on reflec- 
tions with known Miller indices, equation (1) may be 
taken to represent three observational equations (equa- 
tions of condition) for each reflection.i: 

3 
S Vikhgj = h~ij, i=  1,2, 3.  (2) 

k=l  

To obtain observational equations in a form more 
amenable to application of constraints, let us multiply 
both sides of equation (1) on the left by the 'prelimi- 
nary' matrix 

Vo 1-BolU0 -1 

We obtain 

VoWh j =Volh~j=h~ (3) 

where h~, k~ and l~ are numbers that would be integers 
equal to the Miller indices if our original knowledge of 
the lattice constants and orientation parameters were 
exact; in actuality they differ from integers by small 
amounts. We may rewrite equations (3), our new obser- 
vational equations, as 

Dhy=h; (4) 

where the elements of 

D - V o W  = BolUS- 1UB = BoldB (5) 
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are now the unknowns to be found (by least-squares or 
otherwise) and where 

d_--UoSU_ ~ 

( 1 d12 ff2d13\ _ ( 1L3~ --L3~l -- LL2~\ (6) 

I \ __ d13 d23 3 - -  \ - - L 2 ~  Ls~ 11~ 

is a unitary matrix corresponding to a rotation around 
an axis with direction cosines L1,LE, L3, through a very 
small angle ~. Since (with small ~) the matrices Uo 1 
and U approximately commute, the matrix d effectively 
represents the orientation correction for the crystal 
Cartesian axis system with respect to the e-axis system, 
i.e. the resultant of the reverse of the preliminary rota- 
tion U0 followed by the newly estimated rotation U. 
The matrix elements on the right in equation (6) are 
correct to first order in the angle ~.I" 

The constraints due to symmetry, as well as any 
that relate to the values of the lattice constants them- 
selves, are transformed by equation (5) into necessary 
relations among the elements D,j. This is most easily 
seen by considering first the simplest case, that of the 
cubic system, in which 

B=a*l=(1/a)l; BoX=(1/ao)l=ao i (7) 

where 1 is the identity matrix. We obtain immediately 
from equation (5) 

D = a* a0 ~ - d  . . . . .  d (8) 
ao a 

whence the five constraining equations required by 
symmetry are immediately evident from equation (6): 

principle add a sixth constraint, 

D l l -  1 = 0 ,  (10) 

although it is doubtful whether this would be signifi- 
cantly advantageous in practice. 

The cases of lower symmetry are more complicated. 
We omit consideration of the triclinic case, where there 
are no constraints if the lattice constants are being re- 
fined, and where the expression for D is of formidable 
complexity. We shall develop the expression for D in 
the monoclinic case, and specialize later to higher 
symmetries. For economy of presentation we shall con- 
fine ourselves to expressions containing reciprocal lat- 
tice lengths and angles; the corresponding expressions 
in direct lattice parameters can easily be obtained. In 
the monoclinic system (where we adopt the 'first setting' 
- c axis unique - in order to derive later the equations 
for the hexagonal system) equation (3) of Busing & 
Levy becomes 

 cos, ! )  
B = b* sin ?* (11) 

0 * 

We may write this as 

where 
B = Bo + fiB (12)  

• • • ) J * [cos 72. Jb* -b  o sin 7o. fiT*] 0 
5B= [sin )'o. 6b*+b o cos 7~. 57*] 0, . 

0 Je 

(13) 

Dxx -- D22 = 0 
D11 - D33 = 0 
D12 -t- D21 = 0 
D13 + D31 = 0 
D23 + D32 --- 0 

If the lattice constant is not to be 

(9) 

refined, we may in 

From this point on the derivation of the matrix D is 
automatic; we give the result to first order in the matrix 
elements d~g and other correction quantities: 

[Dxs D12 D13~ 
D = { D 2 1  D22 D23] 

\D31 D32 D33] 

i l i c ° t y ° ' d l 2 +  fiai [ [  * --~-~] [a°siny°b° (d12-OY*)fib* yo.] [a~[]c~-(~13-c°ty8"i23)/* ~ . ] ~  

"~ a0 d12 1 - cot y~. d12 + --b~- -t- cot Y0- flY* Co 
- b o sin y; " b 8 Sin ?~ d23 • 

[ z ]  • ] [ / - a° d13 [ - b° (cos)'0. d,3 + sin d23) 1 + 
Co L c o 

(14) 

t The elements of d have been derived from those of the 
matrix given in International Tables for X-ray Crystallography, 
(1959), page 63. With the conventions here employed, the 
matrix given there is the transpose of a matrix representing 
a rotation of a point around an axis having the direction cosines 
ll, 12, 13 in a right-handed Cartesian axial system, through an 
angle ~ the positive rotational direction of which is that of a 
right-hand screw driven along the axis in its positive direction. 
The same directional convention applies here to ~. 

In the case of the monoclinic system, if we are re- 
fining lattice constants as well as orientation param- 
eters, there are only two independent constraints due 
to symmetry, corresponding to the specification that 
~* and fl* are both equal to 90 °. Examination of equa- 
tion (14) easily results in the derivation of a pair of 
equations of contraint: 

A C 26A - 7* 
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a0 D13-a t- bo cos ?0 D23 = 0  cO D31+ ---,- , , 
a ;  c o c o 

C 0 COS ~0 D31 + c0 D32 + b0 sin 2 70 D23= 0 (15) "-i-  - - * "  * " 

ao bo Co 

Additional equations can be derived in the same way 
from equation (14), but they are not independent of 
equations (15). If the lattice constants are not to be 
refined, four additional constraining equations are 
needed, which may be taken as the following, obtained 
from equation (14) by setting 6a*, 6b*, ~c* and 6y* 
equal to zero: 

D 1 1 + D 2 2 - 2 = 0  , 

Ol1+ b0 COS ?o D21-- 1 = 0 ,  (16) 
4 

D33-1 = 0,  

b° D21+ a° D12 = 0 
a; b 0  " 

The hexagonal case (applicable also to the rhombo- 
hedral lattice) is obtained from the monoclinic case by 
setting ?o = 60 °, 6?* = 0, b O = a 0, 6b* = c~a*. The con- 
straining equations required by symmetry are four in 
number, and may be written 

Dn + D21 - D22 = 0 , 

D12 + D21 = 0 ,  (17) 

cO D31+ a° D13 + aO D23 =0  a ;  - - * -  
C0 -~-~- , 

Co cO 34 
- "  ~b; 2a 0 D31+ a0 332+ 323=0.  

If lattice constants are not to be refined, two additional 
constraining equations are needed: 

Dn + D22 -- 2 = 0 ,  

D 3 3 - - 1 = 0  . (18) 

In the orthorhombic case, the three constraining 
equations required by symmetry are 

__ b0 D21= 0 a° Dlz + --~ 
b; ao 

a0 O13+ c0 331=0 (19) 
c-; -ao- 

* C0 3 3 2 = 0  b° D23 + -7-i- 
c0 bo 

and if the lattice 
are three more, 

constants are not to be refined there 

3 1 i - -  1 =0  

D22 -- 1 = 0 

D33 - 1 = 0 

(20) 

In the tetragonal case, the four constraining equa- 
tions required by symmetry are 

and if the lattice 
are two more, 

Dxl - D22 = 0 

DlZ + O21 = 0 (21) 

a0 D13+ c0 D31 0 , - - , -  

Co ao 

CO D32=0 a0 D23+ .... ,- ..-~. 

Co ao 

constants are not to be refined there 

Dl l  - 1 = 0 
D33-1 = 0.  (22) 

The equations for the cubic case have already been 
given. 

Once having refined the Dig with the appropriate 
constraints, we may obtain the matrix V = UB with the 
equation 

V=VoD (23) 

obtained by multiplying equation (5) through by Vo. 
This matrix is now available for calculating l~j for 
further diffractometer measurements with equation (1). 
In addition, we may determine the lattice constants 
(if they were refined) either by extracting the correction 
quantities (~a*, etc.) from the elements of D using 
equation (14) or else by using equations (32)-(34) of 
Busing & Levy, 

~ 'V=BB=G-1 ;  (G-X)~k=a~. a~ (24) 

where G -1 is the metric tensor for the reciprocal lattice. 
The elements of the orientation correction matrix d 

can easily be extracted from the elements of D if they 
are desired, and from these the angle 

~ = (d~2 +d 2 +d23)x/2 (25) 

and the direction cosines 

L I = - d 2 3 / ~ ,  L2=d13/~,  L 3 = - d 1 2 / ~  (26) 

can easily be obtained. 

D i s c u s s i o n  

In principle the nine normal equations that would re- 
sult from an unconstrained least-squares determina- 
tion of the Dik can be combined through the use of 
Lagrange undetermined multipliers with the n equa- 
tions of constraint to give 9 +n  simultaneous linear 
equations in 9 +n  unknowns (the nine Dig and the n 
multipliers) according to the general method described 
in standard textbooks (see for example Whittaker & 
Robinson, 1944). This procedure for including con- 
straints, though 'brute force', can be programmed in 
general for all cases and may be the most straightfor- 
ward, particularly in the monoclinic and hexagonal 
cases. In the other cases, however, the constraining 
equations contain at most two variables and permit the 
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number of least-squares variables to be reduced by 
direct substitution, without recourse to undetermined 
multipliers. Neither of these two methods is in fact 
quite as simple as the application of constraints in the 
Busing-Levy procedure, where the constraints are 
applied to the lattice parameters directly through (for 
example) the simple omission of rows and columns 
from the normal equations matrix. 

Our procedure for refining lattice and orientation 
parameters has some advantages and some disadvan- 
tages (Busing & Levy, 1967c) relative to the Busing- 
Levy procedure. In our procedure the observational 
equations are linear in the parameters, and the refine- 
ment should converge in one cycle, while the Busing- 
Levy procedure may require two or three cycles. (How- 
ever, if in our treatment constraints are to be applied, 
either one must have fairly good preliminary values of 
the parameters or else one must solve the normal equa- 
tions with constraints in successive approximations.) 
The coefficients in our observations are simply the 
integer Miller indices, while in the procedure suggested 
by Busing & Levy the needed coefficients are to be ob- 
tained by numerical differentiation. 

On the other side, in our procedure the observations 
h), k~, l~ are subject in some degree to correlated errors 
because in general all of them for a given reflection 
depend on the same three or four measured angles. 
(Even the angles themselves may be subject to corre- 
lated errors, depending on diffractometer geometry and 
measurement procedure.) However, in the absence of 
constraints the observational equations in the Dix, and 
the normal equations resulting from them, divide into 
three independent sets, the first determining D11,D12, 
D13 from the h), the second D21,D22,D23 from the k}, 
the third D31, D32, D33 from the l}. Within a given set the 
observations are completely uncorrelated and the least- 

squares treatment is completely valid. Such correlation 
of errors as may affect the least-squares refinement in 
cases other than triclinic arises only through the equa- 
tions of constraint, which prevent the equations from 
dividing into independent sets. While the possible ef- 
fects of correlated errors must be borne in mind in the 
use of our procedure, we believe that in nearly all cases 
the loss of accuracy in the refined parameters will be 
small. 

A possible disadvantage of our procedure, relative 
to that of Busing & Levy, is that all three (or four) 
angles must be measured for each reflection. Partial 
information (e.g. Busing & Levy's Type 1 and Type 6 
observations) cannot be used as the basis of refinement 
in our method. Whether this is a severe disadvantage 
will depend on the particular experimental procedures 
employed in the laboratory. 

We are pleased to thank Drs W. A. Busing and H. A. 
Levy for valuable discussion and criticisms. One of us 
(D. P. S.) wishes to thank Dr E. F. Bertaut for the 
hospitality of his laboratory in Grenoble, where most of 
this work was done. 
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Etude de la Sym6trie de Quelques Configurations Magn6tiques par la M6thode de Bertaut 
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(Refu le 5 aofa 1969) 

The representation method of Bertaut is applied to the analysis of spin structures in the following 
ionic compounds: ~-Fe203 and Cr203, UX2 (X=O,S, Se, Te), FeSb204, MnWO4 and hexagonal 
HoMnO3. 

Nous d6crivons dans cette note quelques configura- 
tions magn6tiques par la m6thode de Bertaut (Bertaut, 
1968). Soit Ge le groupe d'espace d'un cristal dans la 
phase ordonn6e magn6tiquement; si l'6nergie est d'or- 
dre 2, la structure peut se d6crire/~ l'aide des fonctions 
de base d'une repr6sentation irr6ductible Fkj de Ge ex- 

traites de l'espace des coordonn6es des moments mag- 
n6tiques de la maille. Nous 6tudions successivement 
les structures magn6tiques des compos6s: 0c-Fe203 
(Dzialoshinsky, 1958) et Cr203 (Corliss & Hastings, 
1964); UX2 (Przystawa, 1967, 1968) (X=O,  S, Se, Te); 
CrCI2 (Wollan, Koehler & Wilkinson, 1959); FeSb204 


